Alexandru-Gabriel Sirbu

Babes-Bolyai University

WeADL 2024 Workshop

The workshop is organized by the Machine Learning research group
(www.cs.ubbcluj.ro/ml) and the Romanian Meteorological Administration

(https://www.meteoromania.ro/)

METEO

Machine Learning Research Group

MLyRE

ROMANIA

http://www.cs.ubbcluj.ro/ml
https://www.meteoromania.ro/

Table of
contents

Task presentation

Abstract Syntax Tree-based approach

Original contribution

Abstract Syntax Graph

Graph Neural Network

Graph Recurrent Neural Network

Results

Discussion

Conclusion

Future work

Task presentation

class DivineFavor (SpellCard) :
def init (self):
super (). init ("Divine Favor", 3,
CHARACTER CLASS.PALADIN, CARD RARITY.RARE)

~ L pivinel Eavori

\ A !

def use(self, player, game):
super () .use (player, game)
difference = len(game.other player.hand) -
len(player.hand)
for 1 in range (0, difference):
player.draw ()

Natural language Code
text

Task presentation

* Similar to Machine Translation
* Based on Sequence-to-Sequence models
* Evaluation: Token Accuracy and BLEU

Abstract Syntax Tree-based approach

:::::::::
::::::::

while b # 0O:

1if a > b: i
a := a - b

else:
b := b - a et

return a

EISSI

aaaaaaaaaa bl

nnnnnnnnnnnnnnnnnnnn

Code o / \ ' ' / \
-variable -\rariable- \rariable- -variable.
_narnE: a _name: I:|_ name: b name: a
Abstract Syntax

Tree

Abstract Syntax Tree-based approach

* AST = Code
+
¢ G e n e rate t h e AST Encoder] Decoder
- network . network

* No syntax errors in generated code = -

* Current generated node depends on:
* Description —initial problem

* State — base model o @ @ @
* Previously generated node — base model lw Unfold lw lw
- —p | hn]~| - < - Jv
* Parent node —to generate a tree
6 @ @ @

Abstract Syntax Tree-based approach

i
I
expr|value]

Iz

3

s . 1y | keyword* [keywords] |

.- Marme = sir
hishslis(reverse): i |k GenToken[sorted]

"‘J'ﬁ GenToken[</n=]

Tadq iy -str[smi'ed'i _E

fihahis .ﬁl.ﬂm,r_!:'.';:]\E

fglapiz) istr True)

(a)

1 GenToken|</n)
-

root — Expr
Expr = expr[value]

expr — Call

Call = expr{func] expr*[args] keyword*[keywords)

CXPIr® = expr keyword* — keyword

expr — Mame

— Action Flow

-----# Parent Feeding

. | Apply Rule
| GenTeken[my_list] Fpiy b

i - Generale Token

MName — sir

GenToken with Copy

A

(b}

Input: sort my_list in descending order Code: sorted(my_list, reverse=True)

Abstract Syntax Tree-based approach

 Generate in DFS order
e statement sequence
e [LIST_START]
while
Compare op: #
variable name: b
constant value: O
e [LIST_START]
* branch

* return
e variable name: a
e [LIST_END]

Weaknesses

* More nodes generated => less
accurate

* Redundancies in leaves generation

* One leaf miss-generated = different
semantical meaning

Original contribution

* Abstract Syntax Graph concept
* Graph Neural Networks for code generation task
* Generate the code as an Abstract Syntax free Graph

10

Abstract Syntax Graph

* Similar to Abstract Syntax Tree

* Incorporates “system memory” idea for variables and their values
* Loops in the initial tree by creating unique leaves
* Generate it using a Graph Recurrent Neural Network

11

Abstract Syntax Graph

statem ent.
Sequence

while

condition

compare

op: # body
variable canstant
. branch
name: b value: 0

wariable
name:

condition if-body else-baody
compare . .
assign assign
op. =
[variable variable variable . kin op lvariable [hin op .
name: a name: b name: op: — name: op: —

variable variable
name: a name: b

AST

variablj -variable.

name: name: a

statem ent
sequence

N

while return
con V
-comp are
body

op: #
variable constant
. branch
name: b value: 0

if-body Ise-body

condition

compare

assign assign
op: >

| |\ \

'variable(

-binop binop-
name: a op: — op: =
(_ P!) P .

ASG

12

Abstract Syntax Graph

Abstract Syntax Tree to Abstract Syntax Graph
1. Each edge receives a direction from parent to child

2. lterate the leaf nodes found in the DFS order
1. Ifthe same leaf node already exists, delete it and create an edge
2. Otherwise, keep the node

13

Graph Neural Network

* Input: Graph with node features and

edges

» Message Passing: Nodes aggregate
iInformation from neighbors @ @ @

* Update: Nodes update their " e & e e e
representations based on aggregated Grarh
Information

* OQutput: Task-specific outputs

14

Graph Recurrent Neural Network

Graph at t-1 step

B W N R

s
bt -1
augmented edges (dashed)

new block (node 35, 6)
Adjacency Matrix

Graph at t step

(2)
© ©
Graph Sampling 0 e
Recurrent o o E> o

Attention
Network

Output distribution on
augmented edges

AU WN R
&3
L

Adjacency Matrix

Liao, Renjie, et al. "Efficient graph generation with graph recurrent attention networks." Advances in neural

information processing systems 32 (2019).

15

Results

Abstract Syntax Tree Abstract Syntax
elg:Telg

Node type 89.62% 27.56%
accuracy

Node type BLEU- 79.76% 0.17%
score

Edge accuracy - 99.48%

Edge precision - 0

16

Discussion

e ASG - considers the order of the children
* GNN —does not consider the order of the children

* ASG - sparse edges
* Tends to generate isolated nodes

17

Conclusion

* Abstract Syntax Graph — not a graph (requires order)
* GNNs - not appropriate for code-related tasks
* Current approaches still have weaknesses

18

Future work

 Code Property Graph = AST + CFG + many others

* Generate a Code Property Graph

* Research ways to deserialize code from Code Property Graph
* Possible issue: CPG is not injective

19

uture work

STATEMENTS

THEN_STATEMENT

ELSE_STATEMENT

STATEMENTS

https://fraunhofer-aisec.github.io/cpg/

20

Thank you!
Q&A

	Slide 1: Generating code from natural language using Abstract Syntax Graphs
	Slide 2
	Slide 3: Task presentation
	Slide 4: Task presentation
	Slide 5: Abstract Syntax Tree-based approach
	Slide 6: Abstract Syntax Tree-based approach
	Slide 7: Abstract Syntax Tree-based approach
	Slide 8: Abstract Syntax Tree-based approach
	Slide 9: Weaknesses
	Slide 10: Original contribution
	Slide 11: Abstract Syntax Graph
	Slide 12: Abstract Syntax Graph
	Slide 13: Abstract Syntax Graph
	Slide 14: Graph Neural Network
	Slide 15: Graph Recurrent Neural Network
	Slide 16: Results
	Slide 17: Discussion
	Slide 18: Conclusion
	Slide 19: Future work
	Slide 20: Future work
	Slide 21: Thank you! Q&A

