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Task presentation

class DivineFavor(SpellCard):

    def __init__(self):

        super().__init__("Divine Favor", 3, 

CHARACTER_CLASS.PALADIN, CARD_RARITY.RARE)

    def use(self, player, game):

        super().use(player, game)

        difference = len(game.other_player.hand) - 

len(player.hand)

        for i in range(0, difference):

            player.draw()

Natural language 
text

Code



Task presentation

• Similar to Machine Translation
• Based on Sequence-to-Sequence models
• Evaluation: Token Accuracy and BLEU



Abstract Syntax Tree-based approach
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while b ≠ 0:

 if a > b:

 a := a - b

 else:

 b := b - a

return a

Code

Abstract Syntax 
Tree



Abstract Syntax Tree-based approach

• AST = Code
• Generate the AST
• No syntax errors in generated code
• Current generated node depends on:

• Description – initial problem
• State – base model
• Previously generated node – base model
• Parent node – to generate a tree
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Abstract Syntax Tree-based approach
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Abstract Syntax Tree-based approach

• Generate in DFS order
• statement sequence
• [LIST_START]
• while
• Compare op: ≠
• variable name: b
• constant value: 0
• [LIST_START]
• branch
• …
• return
• variable name: a
• [LIST_END]
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Weaknesses
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• More nodes generated => less 
accurate

• Redundancies in leaves generation
• One leaf miss-generated = different 

semantical meaning



Original contribution

• Abstract Syntax Graph concept
• Graph Neural Networks for code generation task
• Generate the code as an Abstract Syntax Tree Graph
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Abstract Syntax Graph

• Similar to Abstract Syntax Tree
• Incorporates “system memory” idea for variables and their values
• Loops in the initial tree by creating unique leaves
• Generate it using a Graph Recurrent Neural Network
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Abstract Syntax Graph

12AST ASG



Abstract Syntax Graph

Abstract Syntax Tree to Abstract Syntax Graph
1. Each edge receives a direction from parent to child
2. Iterate the leaf nodes found in the DFS order

1. If the same leaf node already exists, delete it and create an edge
2. Otherwise, keep the node
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Graph Neural Network

• Input: Graph with node features and 
edges

• Message Passing: Nodes aggregate 
information from neighbors

• Update: Nodes update their 
representations based on aggregated 
information

• Output: Task-specific outputs
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Graph Recurrent Neural Network
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Liao, Renjie, et al. "Efficient graph generation with graph recurrent attention networks." Advances in neural 
information processing systems 32 (2019).



Results

16

Abstract Syntax Tree Abstract Syntax 
Graph

Node type 
accuracy

89.62% 27.56%

Node type BLEU-
score

79.76% 0.17%

Edge accuracy - 99.48%

Edge precision - 0



Discussion

• ASG – considers the order of the children
• GNN – does not consider the order of the children
• ASG – sparse edges
• Tends to generate isolated nodes
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Conclusion

• Abstract Syntax Graph – not a graph (requires order)
• GNNs – not appropriate for code-related tasks
• Current approaches still have weaknesses
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Future work

• Code Property Graph = AST + CFG + many others
• Generate a Code Property Graph
• Research ways to deserialize code from Code Property Graph

• Possible issue: CPG is not injective
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Future work
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https://fraunhofer-aisec.github.io/cpg/



Thank you!
Q&A
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