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Task presentation

class DivineFavor (SpellCard) :
def  init (self):
super (). init ("Divine Favor", 3,
CHARACTER CLASS.PALADIN, CARD RARITY.RARE)

~ L pivinel Eavori

\ A !

def use(self, player, game):
super () .use (player, game)
difference = len(game.other player.hand) -
len(player.hand)
for 1 in range (0, difference):
player.draw ()

Natural language Code
text



Task presentation

* Similar to Machine Translation
* Based on Sequence-to-Sequence models
* Evaluation: Token Accuracy and BLEU



Abstract Syntax Tree-based approach
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while b # 0O:

1if a > b: i
a := a - b

else:
b := b - a et
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Abstract Syntax Tree-based approach

* AST = Code
+
¢ G e n e rate t h e AST Encoder ] Decoder
- network . network

* No syntax errors in generated code = -

* Current generated node depends on:
* Description —initial problem

* State — base model o @ @ @
* Previously generated node — base model lw  Unfold lw lw
- —p | hn ]~| - < - Jv
* Parent node —to generate a tree
6 @ @ @



Abstract Syntax Tree-based approach
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Abstract Syntax Tree-based approach

 Generate in DFS order
e statement sequence
e [LIST_START]
while
Compare op: #
variable name: b
constant value: O
e [LIST_START]
* branch

* return
e variable name: a
e [LIST_END]




Weaknesses

* More nodes generated => less
accurate

* Redundancies in leaves generation

* One leaf miss-generated = different
semantical meaning




Original contribution

* Abstract Syntax Graph concept
* Graph Neural Networks for code generation task
* Generate the code as an Abstract Syntax free Graph
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Abstract Syntax Graph

* Similar to Abstract Syntax Tree

* Incorporates “system memory” idea for variables and their values
* Loops in the initial tree by creating unique leaves
* Generate it using a Graph Recurrent Neural Network
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Abstract Syntax Graph
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Abstract Syntax Graph

Abstract Syntax Tree to Abstract Syntax Graph
1. Each edge receives a direction from parent to child

2. lterate the leaf nodes found in the DFS order
1. Ifthe same leaf node already exists, delete it and create an edge
2. Otherwise, keep the node
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Graph Neural Network

* Input: Graph with node features and

edges

» Message Passing: Nodes aggregate
iInformation from neighbors @ @ @

* Update: Nodes update their " e & e e e
representations based on aggregated Grarh
Information

* OQutput: Task-specific outputs
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Graph Recurrent Neural Network

Graph at t-1 step
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Liao, Renjie, et al. "Efficient graph generation with graph recurrent attention networks." Advances in neural

information processing systems 32 (2019).
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Results

Abstract Syntax Tree Abstract Syntax
elg:Telg

Node type 89.62% 27.56%
accuracy

Node type BLEU- 79.76% 0.17%
score

Edge accuracy - 99.48%

Edge precision - 0
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Discussion

e ASG - considers the order of the children
* GNN —does not consider the order of the children

* ASG - sparse edges
* Tends to generate isolated nodes
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Conclusion

* Abstract Syntax Graph — not a graph (requires order)
* GNNs - not appropriate for code-related tasks
* Current approaches still have weaknesses
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Future work

 Code Property Graph = AST + CFG + many others

* Generate a Code Property Graph

* Research ways to deserialize code from Code Property Graph
* Possible issue: CPG is not injective
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uture work

STATEMENTS

THEN_STATEMENT

ELSE_STATEMENT

STATEMENTS

https://fraunhofer-aisec.github.io/cpg/
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Thank you!
Q&A
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