
Generating code from natural language using
Abstract Syntax Graphs
Alexandru-Gabriel Sîrbu

Babeș-Bolyai University

WeADL 2024 Workshop

The workshop is organized by the Machine Learning research group
(www.cs.ubbcluj.ro/ml) and the Romanian Meteorological Administration

(https://www.meteoromania.ro/)

http://www.cs.ubbcluj.ro/ml
https://www.meteoromania.ro/

Table of
contents

Task presentation

Abstract Syntax Tree-based approach

Original contribution

Abstract Syntax Graph

Graph Neural Network

Graph Recurrent Neural Network

Results

Discussion

Conclusion

Future work

Task presentation

class DivineFavor(SpellCard):

 def __init__(self):

 super().__init__("Divine Favor", 3,

CHARACTER_CLASS.PALADIN, CARD_RARITY.RARE)

 def use(self, player, game):

 super().use(player, game)

 difference = len(game.other_player.hand) -

len(player.hand)

 for i in range(0, difference):

 player.draw()

Natural language
text

Code

Task presentation

• Similar to Machine Translation
• Based on Sequence-to-Sequence models
• Evaluation: Token Accuracy and BLEU

Abstract Syntax Tree-based approach

5

while b ≠ 0:

 if a > b:

 a := a - b

 else:

 b := b - a

return a

Code

Abstract Syntax
Tree

Abstract Syntax Tree-based approach

• AST = Code
• Generate the AST
• No syntax errors in generated code
• Current generated node depends on:

• Description – initial problem
• State – base model
• Previously generated node – base model
• Parent node – to generate a tree

6

Abstract Syntax Tree-based approach

7

Abstract Syntax Tree-based approach

• Generate in DFS order
• statement sequence
• [LIST_START]
• while
• Compare op: ≠
• variable name: b
• constant value: 0
• [LIST_START]
• branch
• …
• return
• variable name: a
• [LIST_END]

8

Weaknesses

9

• More nodes generated => less
accurate

• Redundancies in leaves generation
• One leaf miss-generated = different

semantical meaning

Original contribution

• Abstract Syntax Graph concept
• Graph Neural Networks for code generation task
• Generate the code as an Abstract Syntax Tree Graph

10

Abstract Syntax Graph

• Similar to Abstract Syntax Tree
• Incorporates “system memory” idea for variables and their values
• Loops in the initial tree by creating unique leaves
• Generate it using a Graph Recurrent Neural Network

11

Abstract Syntax Graph

12AST ASG

Abstract Syntax Graph

Abstract Syntax Tree to Abstract Syntax Graph
1. Each edge receives a direction from parent to child
2. Iterate the leaf nodes found in the DFS order

1. If the same leaf node already exists, delete it and create an edge
2. Otherwise, keep the node

13

Graph Neural Network

• Input: Graph with node features and
edges

• Message Passing: Nodes aggregate
information from neighbors

• Update: Nodes update their
representations based on aggregated
information

• Output: Task-specific outputs

14

Graph Recurrent Neural Network

15

Liao, Renjie, et al. "Efficient graph generation with graph recurrent attention networks." Advances in neural
information processing systems 32 (2019).

Results

16

Abstract Syntax Tree Abstract Syntax
Graph

Node type
accuracy

89.62% 27.56%

Node type BLEU-
score

79.76% 0.17%

Edge accuracy - 99.48%

Edge precision - 0

Discussion

• ASG – considers the order of the children
• GNN – does not consider the order of the children
• ASG – sparse edges
• Tends to generate isolated nodes

17

Conclusion

• Abstract Syntax Graph – not a graph (requires order)
• GNNs – not appropriate for code-related tasks
• Current approaches still have weaknesses

18

Future work

• Code Property Graph = AST + CFG + many others
• Generate a Code Property Graph
• Research ways to deserialize code from Code Property Graph

• Possible issue: CPG is not injective

19

Future work

20

https://fraunhofer-aisec.github.io/cpg/

Thank you!
Q&A

21

	Slide 1: Generating code from natural language using Abstract Syntax Graphs
	Slide 2
	Slide 3: Task presentation
	Slide 4: Task presentation
	Slide 5: Abstract Syntax Tree-based approach
	Slide 6: Abstract Syntax Tree-based approach
	Slide 7: Abstract Syntax Tree-based approach
	Slide 8: Abstract Syntax Tree-based approach
	Slide 9: Weaknesses
	Slide 10: Original contribution
	Slide 11: Abstract Syntax Graph
	Slide 12: Abstract Syntax Graph
	Slide 13: Abstract Syntax Graph
	Slide 14: Graph Neural Network
	Slide 15: Graph Recurrent Neural Network
	Slide 16: Results
	Slide 17: Discussion
	Slide 18: Conclusion
	Slide 19: Future work
	Slide 20: Future work
	Slide 21: Thank you! Q&A

